Characterization of Wolbachia host cell range via the in vitro establishment of infections.
نویسندگان
چکیده
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are frequently found in insects and cause a diverse array of reproductive manipulations, including cytoplasmic incompatibility, male killing, parthenogenesis, and feminization. Despite the existence of a broad range of scientific interest, many aspects of Wolbachia research have been limited to laboratories with insect-rearing facilities. The inability to culture these bacteria outside of the invertebrate host has also led to the existing bias of Wolbachia research toward infections that occur in host insects that are easily reared. Here, we demonstrate that Wolbachia infections can be simply established, stably maintained, and cryogenically stored in vitro using standard tissue culture techniques. We have examined Wolbachia host range by introducing different Wolbachia types into a single tissue culture. The results show that an Aedes albopictus (Diptera: Culicidae) cell line can support five different Wolbachia infection types derived from Drosophila simulans (Diptera: Drosophilidae), Culex pipiens (Culicidae), and Cadra cautella (Lepidoptera: Phycitidae). These bacterial types include infection types that have been assigned to two of the major Wolbachia clades. As an additional examination of Wolbachia host cell range, we demonstrated that a Wolbachia strain from D. simulans could be established in host insect cell lines derived from A. albopictus, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Drosophila melanogaster. These results will facilitate the development of a Wolbachia stock center, permitting novel approaches for the study of Wolbachia infections and encouraging Wolbachia research in additional laboratories.
منابع مشابه
Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate.
Wolbachia spp. are intracellular alpha proteobacteria closely related to Rickettsia. The maternally inherited infections occur in a wide range of invertebrates, causing several reproductive abnormalities, including cytoplasmic incompatibility. The artificial transfer of Wolbachia between hosts (transfection) is used both for basic research examining the Wolbachia-host interaction and for applie...
متن کاملWolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors.
The endosymbiotic bacteria in the genus Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI), which could lead to the replacement of uninfected host populations with infected ones. Because of this, Wolbachia have attracted considerable interest as a potential mechanism for spreading disease-blocking transgenes th...
متن کاملRock mass structural characterization via short-range digital photogrammetry
Because of the important role of rock mass structural properties on its mechanical behavior, determining the qualitative and quantitative properties of has been a subject of intense research. In this regard, numerous techniques such as scanline surveying, cell mapping, and geologic structure mapping have been proposed. However, applying such field surveying techniques for rock mass properties i...
متن کاملCo-evolution between an Endosymbiont and Its Nematode Host: Wolbachia Asymmetric Posterior Localization and AP Polarity Establishment
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization ...
متن کاملCan Anopheles gambiae be infected with Wolbachia pipientis? Insights from an in vitro system.
Wolbachia pipientis are maternally inherited endosymbionts associated with cytoplasmic incompatibility, a potential mechanism to drive transgenic traits into Anopheles populations for malaria control. W. pipientis infections are common in many mosquito genera but have never been observed in any Anopheles species, leading to the hypothesis that Anopheles mosquitoes are incapable of harboring inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2002